Grid computing (or the use of a computational grid) is applying the resources of many computers in a network to a single problem at the same time - usually to a scientific or technical problem that requires a great number of computer processing cycles or access to large amounts of data. A well-known example of grid computing in the public domain is the ongoing SETI (Search for Extraterrestrial Intelligence) @Home project in which thousands of people are sharing the unused processor cycles of their PCs in the vast search for signs of "rational" signals from outer space. According to John Patrick, IBM's vice-president for Internet strategies, "the next big thing will be grid computing."
Grid computing requires the use of software that can divide and farm out pieces of a program to as many as several thousand computers. Grid computing can be thought of as distributed and large-scale cluster computing and as a form of network-distributed parallel processing. It can be confined to the network of computer workstations within a corporation or it can be a public collaboration (in which case it is also sometimes known as a form of peer-to-peer computing).
A number of corporations, professional groups, university consortiums, and other groups have developed or are developing frameworks and software for managing grid computing projects. The European Community (EU) is sponsoring a project for a grid for high-energy physics, earth observation, and biology applications. In the United States, the National Technology Grid is prototyping a computational grid for infrastructure and an access grid for people. Sun Microsystems offers Grid Engine software. Described as a distributed resource management (DRM) tool, Grid Engine allows engineers at companies like Sony and Synopsys to pool the computer cycles on up to 80 workstations at a time. (At this scale, grid computing can be seen as a more extreme case of load balancing.)
Grid computing appears to be a promising trend for three reasons: (1) its ability to make more cost-effective use of a given amount of computer resources, (2) as a way to solve problems that can't be approached without an enormous amount of computing power, and (3) because it suggests that the resources of many computers can be cooperatively and perhaps synergistically harnessed and managed as a collaboration toward a common objective. In some grid computing systems, the computers may collaborate rather than being directed by one managing computer. One likely area for the use of grid computing will be pervasive computing applications - those in which computers pervade our environment without our necessary awareness.