Question:
what is java language?
brij_niit
2006-10-31 01:44:42 UTC
what is java language?
Twelve answers:
Mark aka jack573
2006-10-31 02:54:30 UTC
You can find out what Java is at this web site

http://www.java.com/en/download/faq/whatis_java.xml



Other questions you may have may be found here

http://www.java.com/en/download/faq/index_general.xml



Note that these links are from the official site for Java. There are two sites, one for using Java, the other for developing Java. The above are for using, and below are for developing.



You can find a lot of information on this page, even provides an overview of Java

http://java.sun.com/javase/



With a list of frquently asked questions.

http://java.sun.com/javase/faqs.jsp
anonymous
2006-10-31 22:04:36 UTC
Java is an object oriented languages (OOPS). All the programs based on class as well as objects.

Java is a machine independent language.



While compling the source code will be convert into class file without creating object file (intermediate file).
nik m
2006-10-31 10:20:59 UTC
It is an Object oriented programming language developed for internet application as well as gaming softwares.

More than crucial it is secure with totally running java application in different environment called java virtual machine.
liketoaskq
2006-10-31 09:53:59 UTC
It is the native language of Java island in Indonesia.
alakit013
2006-10-31 10:52:29 UTC
Java has been originally designed by Sun Microsystems as a language for embedded programming. Because it has many common points with other modern languages, it has occupied such huge area that i guess, even Sun has been surprised :-)
Guru
2006-10-31 09:59:03 UTC
Java is Object Oriented Programming Langauge. to see the big resource and best information and sample or example

follow the site:

www.planet-source-code.com



this is an artical, you can download it. I think so it is easy to understand and implement



http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=3113&lngWId=2
amazed !!!
2006-10-31 09:52:08 UTC
it is d latest computer object oriented language developed by sun micro systems in USA..and d father of java is james gosling
Yogesh Gowda
2006-10-31 09:56:20 UTC
Kannada
faizel
2006-10-31 10:49:43 UTC
it is used in computer as coding word it is type of language like c and c++
Andrew B.
2006-10-31 09:49:34 UTC
A programming language such as C, FORTRAN, or Pascal that enables a programmer to write programs that are more or less independent of a particular type of computer. Such languages are considered high-level because they are closer to human languages and further from machine languages. In contrast, assembly languages are considered low-level because they are very close to machine languages.

The main advantage of high-level languages over low-level languages is that they are easier to read, write, and maintain. Ultimately, programs written in a high-level language must be translated into machine language by a compiler or interpreter.



The first high-level programming languages were designed in the 1950s. Now there are dozens of different languages, including Ada, Algol, BASIC, COBOL, C, C++, FORTRAN, LISP, Pascal, and Prolog.





A vocabulary and set of grammatical rules for instructing a computer to perform specific tasks. The term programming language usually refers to high-level languages, such as BASIC, C, C++, COBOL, FORTRAN, Ada, and Pascal. Each language has a unique set of keywords (words that it understands) and a special syntax for organizing program instructions.

High-level programming languages, while simple compared to human languages, are more complex than the languages the computer actually understands, called machine languages. Each different type of CPU has its own unique machine language.



Lying between machine languages and high-level languages are languages called assembly languages. Assembly languages are similar to machine languages, but they are much easier to program in because they allow a programmer to substitute names for numbers. Machine languages consist of numbers only.



Lying above high-level languages are languages called fourth-generation languages (usually abbreviated 4GL). 4GLs are far removed from machine languages and represent the class of computer languages closest to human languages.



Regardless of what language you use, you eventually need to convert your program into machine language so that the computer can understand it. There are two ways to do this:



compile the program

interpret the program

See compile and interpreter for more information about these two methods.



The question of which language is best is one that consumes a lot of time and energy among computer professionals. Every language has its strengths and weaknesses. For example, FORTRAN is a particularly good language for processing numerical data, but it does not lend itself very well to organizing large programs. Pascal is very good for writing well-structured and readable programs, but it is not as flexible as the C programming language. C++ embodies powerful object-oriented features, but it is complex and difficult to learn.



The choice of which language to use depends on the type of computer the program is to run on, what sort of program it is, and the expertise of the programmer.
trish the dish
2006-10-31 09:47:48 UTC
it is a programming code used mostly for games. below is a great link to help you:





http://www.webopedia.com/TERM/J/Java.html
anonymous
2006-10-31 09:53:52 UTC
Java is an object-oriented programming language developed by James Gosling and colleagues at Sun Microsystems in the early 1990s. Unlike conventional languages which are generally designed either to be compiled to native (machine) code, or to be interpreted from source code at runtime, Java is intended to be compiled to a bytecode (though it can be compiled to native code with gcj), which is then run (generally using JIT compilation) by a Java virtual machine.



The language itself borrows much syntax from C and C++ but has a simpler object model and fewer low-level facilities.



Java is not related to JavaScript, though they have similar names and share a C-like syntax.



History



Java was started as a project called "Oak" by James Gosling in June 1991. Gosling's goals were to implement a virtual machine and a language that had a familiar C-like notation but with greater uniformity and simplicity than C/C++. The first public implementation was Java 1.0 in 1995. It made the promise of "Write Once, Run Anywhere" (WORA), with free runtimes on popular platforms. It was fairly secure and its security was configurable, allowing for network and file access to be limited. The major web browsers soon incorporated it into their standard configurations in a secure "applet" configuration. It became popular quickly. New versions for large and small platforms (J2EE and J2ME) soon were designed with the advent of "Java 2".



In 1997, Sun approached the ISO/IEC JTC1 standards body and later the Ecma International to formalize Java, but it soon withdrew from the process.[1][2][3] Java remains a proprietary de facto standard that is controlled through the Java Community Process [4]. Sun makes most of its Java implementations available without charge, with revenue being generated by specialized products such as the Java Enterprise System. Sun distinguishes between its Software Development Kit (SDK) and Runtime Environment (JRE) which is a subset of the SDK, the primary distinction being that in the JRE the compiler is not present.



[edit] Releases



The Java project has undergone a number of version changes, large and small, most with a codename. As of September 2004, they include:



* JDK 1.1.4 (Sparkler) September 12, 1997

o JDK 1.1.5 (Pumpkin) December 3, 1997

o JDK 1.1.6 (Abigail) April 24, 1998

o JDK 1.1.7 (Brutus) September 28, 1998

o JDK 1.1.8 (Chelsea) April 8, 1999

* J2SE 1.2 (Playground) December 4, 1998

o J2SE 1.2.1 (none) March 30, 1999

o J2SE 1.2.2 (Cricket) July 8, 1999

* J2SE 1.3 (Kestrel) May 8, 2000

o J2SE 1.3.1 (Ladybird) May 17, 2001

* J2SE 1.4.0 (Merlin) February 13, 2002

o J2SE 1.4.1 (Hopper) September 16, 2002

o J2SE 1.4.2 (Mantis) June 26, 2003

* Java SE 5 (1.5.0) (Tiger) September 29, 2004



[edit] Philosophy



There were five primary goals in the creation of the Java language:



1. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple operating systems.

3. It should contain built-in support for using computer networks.

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use by selecting what was considered the good parts of other object-oriented languages.



To achieve the goals of networking support and remote code execution, Java programmers sometimes find it necessary to use extensions such as CORBA, Internet Communications Engine, or OSGi.



[edit] Object orientation



The first characteristic, object orientation ("OO"), refers to a method of programming and language design. Although there are many interpretations of OO, one primary distinguishing idea is to design software so that the various types of data it manipulates are combined together with their relevant operations. Thus, data and code are combined into entities called objects. An object can be thought of as a self-contained bundle of behavior (code) and state (data). The principle is to separate the things that change from the things that stay the same; often, a change to some data structure requires a corresponding change to the code that operates on that data, or vice versa. This separation into coherent objects provides a more stable foundation for a software system's design. The intent is to make large software projects easier to manage, thus improving quality and reducing the number of failed projects.



Another primary goal of OO programming is to develop more generic objects so that software can become more reusable between projects. A generic "customer" object, for example, should in theory have roughly the same basic set of behaviors between different software projects, especially when these projects overlap on some fundamental level as they often do in large organizations. In this sense, software objects can hopefully be seen more as pluggable components, helping the software industry build projects largely from existing and well-tested pieces, thus leading to a massive reduction in development times. Software reusability has met with mixed practical results, with two main difficulties: the design of truly generic objects is poorly understood, and a methodology for broad communication of reuse opportunities is lacking. Some open source communities want to help ease the reuse problem, by providing authors with ways to disseminate information about generally reusable objects and object libraries.



[edit] Platform independence

The look and feel of Java Swing GUIs is independent of the platform on which they are running

Enlarge

The look and feel of Java Swing GUIs is independent of the platform on which they are running



The second characteristic, platform independence, means that programs written in the Java language must run similarly on diverse hardware. One should be able to write a program once and run it anywhere.



This is achieved by most Java compilers by translating the Java language code "halfway" to bytecode (specifically Java bytecode)—simplified machine instructions specific to the Java platform. The code is then run on a virtual machine (VM), a program written in native code on the host hardware that interprets and executes generic Java bytecode. Further, standardized libraries are provided to allow access to features of the host machines (such as graphics, threading and networking) in unified ways. Note that, although there's an explicit compiling stage, at some point, the Java bytecode is interpreted or converted to native machine instructions by the JIT compiler.



There are also implementations of Java compilers that translate the Java language code to native object code, such as GCJ, removing the intermediate bytecode stage, but the output of these compilers can only be run on a single architecture.



Sun's license for Java insists that all implementations be "compatible". This resulted in a legal dispute with Microsoft after Sun claimed that the Microsoft implementation did not support the RMI and JNI interfaces and had added platform-specific features of their own. Sun sued and won both damages (some $20 million) and a court order enforcing the terms of the license from Sun. In response, Microsoft no longer ships Java with Windows, and in recent versions of Windows, Internet Explorer cannot support Java applets without a third-party plugin. However, Sun and others have made available Java run-time systems at no cost for those and other versions of Windows.



The first implementations of the language used an interpreted virtual machine to achieve portability. These implementations produced programs that ran more slowly than programs compiled to native executables, for instance written in C or C++, so the language suffered a reputation for poor performance. More recent JVM implementations produce programs that run significantly faster than before, using multiple techniques.



The first technique is to simply compile directly into native code like a more traditional compiler, skipping bytecodes entirely. This achieves good performance, but at the expense of portability. Another technique, known as just-in-time compilation (JIT), translates the Java bytecodes into native code at the time that the program is run which results in a program that executes faster than interpreted code but also incurs compilation overhead during execution. More sophisticated VMs use dynamic recompilation, in which the VM can analyze the behavior of the running program and selectively recompile and optimize critical parts of the program. Dynamic recompilation can achieve optimizations superior to static compilation because the dynamic compiler can base optimizations on knowledge about the runtime environment and the set of loaded classes. JIT compilation and dynamic recompilation allow Java programs to take advantage of the speed of native code without losing portability.



Portability is a technically difficult goal to achieve, and Java's success at that goal has been mixed. Although it is indeed possible to write programs for the Java platform that behave consistently across many host platforms, the large number of available platforms with small errors or inconsistencies led some to parody Sun's "Write once, run anywhere" slogan as "Write once, debug everywhere".



Platform-independent Java is however very successful with server-side applications, such as Web services, servlets, and Enterprise JavaBeans, as well as with Embedded systems based on OSGi, using Embedded Java environments.



[edit] Automatic garbage collection



One idea behind Java's automatic memory management model is that programmers should be spared the burden of having to perform manual memory management. In some languages the programmer allocates memory to create any object stored on the heap and is responsible for later manually deallocating that memory to delete any such objects. If a programmer forgets to deallocate memory or writes code that fails to do so in a timely fashion, a memory leak can occur: the program will consume a potentially arbitrarily large amount of memory. In addition, if a region of memory is deallocated twice, the program can become unstable and may crash. Finally, in non garbage collected environments, there is a certain degree of overhead and complexity of user-code to track and finalize allocations. Often developers may box themselves into certain designs to provide reasonable assurances that memory leaks will not occur.



In Java, this potential problem is avoided by automatic garbage collection. The programmer determines when objects are created, and the Java runtime is responsible for managing the object's lifecycle. The program or other objects can reference an object by holding a reference to it (which, from a low-level point of view, is its address on the heap). When no references to an object remain, the Java garbage collector automatically deletes the unreachable object, freeing memory and preventing a memory leak. Memory leaks may still occur if a programmer's code holds a reference to an object that is no longer needed—in other words, they can still occur but at higher conceptual levels.



The use of garbage collection in a language can also affect programming paradigms. If, for example, the developer assumes that the cost of memory allocation/recollection is low, they may choose to more freely construct objects instead of pre-initializing, holding and reusing them. With the small cost of potential performance penalities (inner-loop construction of large/complex objects), this facilitates thread-isolation (no need to synchronize as different threads work on different object instances) and data-hiding. The use of transient immutable value-objects minimizes side-effect programming.



Comparing Java and C++, it is possible in C++ to implement similar functionality (for example, a memory management model for specific classes can be designed in C++ to improve speed and lower memory fragmentation considerably), with the possible cost of extra development time and some application complexity. In Java, garbage collection is built-in and virtually invisible to the developer. That is, developers may have no notion of when garbage collection will take place as it may not necessarily correlate with any actions being explicitly performed by the code they write. Depending on intended application, this can be beneficial or disadvantageous: the programmer is freed from performing low-level tasks, but at the same time loses the option of writing lower level code.



[edit] Syntax



Main article: Java syntax



The syntax of Java is largely derived from C++. However, unlike C++, which combines the syntax for structured, generic, and object-oriented programming, Java was built from the ground up to be virtually fully object-oriented: everything in Java is an object with the exceptions of atomic datatypes (ordinal and real numbers, boolean values, and characters) and everything in Java is written inside a class.


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...